

Welcome to SCIC’s documentation!

	Introduction
	Routines available in SCIC

	Conventions used in this manual

	Using the Libraries
	Compiling and Linking

	Shared Libraries

	ANSI C Compliance

	Inline functions

	Long double

	Compatibility with C++

	Thread-safety

	Error Handling
	Error Reporting

	Error Codes

	Error Handlers

	Using SCIC error reporting in your own functions

Indices and tables

	Index

Introduction

The SciC is a collection of routines and apps written from scratch in C,
and present a modern Applications Programming Interface
(API) for C programmers, allowing wrappers to be written for very
high level languages. The source code is distributed under the MIT License.

Routines available in SCIC

The libraries cover a wide range of topics in scientific computing.
Routines are available for the following areas,

	Error Handling

	Numerical Computation

	Data Structures

Conventions used in this manual

This manual contains many examples which can be typed at the keyboard.
A command entered at the terminal is shown like this:

$ command

The first character on the line is the terminal prompt, and should not
be typed. The dollar sign $ is used as the standard prompt in
this manual, although some systems may use a different character.

The examples assume the use of the GNU operating system. There may be
minor differences in the output on other systems. The commands for
setting environment variables use the Bourne shell syntax of the
standard GNU shell (bash).

Using the Libraries

This chapter describes how to compile programs that use SCIC libraries, and
introduces its conventions.

Compiling and Linking

The library header files are installed in their own scic
directory. You should write any preprocessor include statements with a
scic/ directory prefix thus:

#include <scic/errno.h>

If the directory is not installed on the standard search path of your
compiler you will also need to provide its location to the preprocessor
as a command line flag. The default location of the scic
directory is /usr/local/include.

A typical compilation command for a source file example.c with
the GNU C compiler gcc is:

$ gcc -Wall -I/usr/local/include -c example.c

This results in an object file example.o. The default
include path for gcc searches /usr/local/include automatically so
the -I option can actually be omitted when SCIC is installed
in its default location.

Linking programs with the library

The library is installed as a single file, e.g. libscic-errno.a for the scic/errno library. A shared
version of the library libscic-errno.so is also installed on systems
that support shared libraries. The default location of these files is
/usr/local/lib. If this directory is not on the standard search
path of your linker you will also need to provide its location as a
command line flag. The following example shows how to link an application
with the library:

$ gcc -L/usr/local/lib example.o -lscic-errno

The default library path for gcc searches /usr/local/lib
automatically so the -L option can be omitted when SCIC is
installed in its default location.

For a tutorial introduction to the GNU C Compiler and related programs,
see “An Introduction to GCC” (ISBN 0954161793). 1

Shared Libraries

To run a program linked with the shared version of the library the
operating system must be able to locate the corresponding .so
file at runtime. If the library cannot be found, the following error
will occur:

$./a.out
./a.out: error while loading shared libraries:
libscic-errno.so.0: cannot open shared object file: No such file or directory

To avoid this error, either modify the system dynamic linker
configuration 2 or
define the shell variable LD_LIBRARY_PATH to include the
directory where the library is installed.

For example, in the Bourne shell (/bin/sh or /bin/bash),
the library search path can be set with the following commands:

$ LD_LIBRARY_PATH=/usr/local/lib
$ export LD_LIBRARY_PATH
$./example

In the C-shell (/bin/csh or /bin/tcsh) the equivalent
command is:

% setenv LD_LIBRARY_PATH /usr/local/lib

The standard prompt for the C-shell in the example above is the percent
character %, and should not be typed as part of the command.

To save retyping these commands each session they can be placed in an
individual or system-wide login file.

To compile a statically linked version of the program, use the
-static flag in gcc:

$ gcc -static example.o -lscic-errno

ANSI C Compliance

The library is written in ANSI C and is intended to conform to the ANSI
C standard (C89). It should be portable to any system with a working
ANSI C compiler.

The library does not rely on any non-ANSI extensions in the interface it
exports to the user. Programs you write using SCIC can be ANSI
compliant. Extensions which can be used in a way compatible with pure
ANSI C are supported, however, via conditional compilation. This allows
the library to take advantage of compiler extensions on those platforms
which support them.

When an ANSI C feature is known to be broken on a particular system the
library will exclude any related functions at compile-time. This should
make it impossible to link a program that would use these functions and
give incorrect results.

To avoid namespace conflicts all exported function names and variables
have the prefix scic_, while exported macros have the prefix
SCIC_.

Inline functions

The inline keyword is not part of the original ANSI C standard (C89)
so the library does not export any inline function definitions by default.
Inline functions were introduced officially in the newer C99 standard but
most C89 compilers have also included inline as an extension for a
long time.

To allow the use of inline functions, the library provides optional inline
versions of performance-critical routines by conditional compilation in the
exported header files.

By default, the actual form of the inline keyword is extern inline,
which is a gcc extension that eliminates unnecessary function
definitions.

When compiling with gcc in C99 mode (gcc -std=c99) the header files
automatically switch to C99-compatible inline function declarations instead
of extern inline.

Long double

In general, the algorithms in the library are written for double
precision only. The long double type is not supported for
every computation.

One reason for this choice is that the precision of long double
is platform dependent. The IEEE standard only specifies the minimum
precision of extended precision numbers, while the precision of
double is the same on all platforms.

However, it is sometimes necessary to interact with external data in
long-double format, so the structures datatypes include
long-double versions.

It should be noted that in some system libraries the stdio.h
formatted input/output functions printf and scanf are
not implemented correctly for long double. Undefined or
incorrect results are avoided by testing these functions during the
configure stage of library compilation and eliminating certain
SCIC functions which depend on them if necessary. The corresponding
line in the configure output looks like this:

checking whether printf works with long double... no

Consequently when long double formatted input/output does not
work on a given system it should be impossible to link a program which
uses SCIC functions dependent on this.

If it is necessary to work on a system which does not support formatted
long double input/output then the options are to use binary
formats or to convert long double results into double for
reading and writing.

Compatibility with C++

The library header files automatically define functions to have
extern "C" linkage when included in C++ programs. This allows
the functions to be called directly from C++.

Thread-safety

The library can be used in multi-threaded programs. All the functions
are thread-safe, in the sense that they do not use static variables.
Memory is always associated with objects and not with functions. For
functions which use workspace objects as temporary storage the
workspaces should be allocated on a per-thread basis. For functions
which use table objects as read-only memory the tables can be used
by multiple threads simultaneously.

Footnotes

	1

	http://www.network-theory.co.uk/gcc/intro/

	2

	/etc/ld.so.conf on GNU/Linux systems

Error Handling

This chapter describes the way that SciC functions report and handle
errors. By examining the status information returned by every function
you can determine whether it succeeded or failed, and if it failed you
can find out what the precise cause of failure was. You can also define
your own error handling functions to modify the default behavior of the
library.

The functions described in this chapter are declared in the header
file scic/errno.h.

Error Reporting

The library follows the thread-safe error reporting conventions of the
POSIX Threads library. Functions return a non-zero error code to
indicate an error and 0 to indicate success:

int status = scic_function (...)

if (status) { /* an error occurred */

 /* status value specifies the type of error */
}

The routines report an error whenever they cannot perform the task
requested of them. For example, a root-finding function would return a
non-zero error code if could not converge to the requested accuracy, or
exceeded a limit on the number of iterations. Situations like this are
a normal occurrence when using any mathematical library and you should
check the return status of the functions that you call.

Whenever a routine reports an error the return value specifies the type
of error. The return value is analogous to the value of the variable
errno in the C library. The caller can examine the return code
and decide what action to take, including ignoring the error if it is
not considered serious.

In addition to reporting errors by return codes the library also has an
error handler function scic_error(). This function is called by
other library functions when they report an error, just before they
return to the caller. The default behavior of the error handler is to
print a message and abort the program:

scic: file.c:67: ERROR: invalid argument supplied by user
Default SCIC error handler invoked.
Aborted

The purpose of the scic_error() handler is to provide a function
where a breakpoint can be set that will catch library errors when
running under the debugger. It is not intended for use in production
programs, which should handle any errors using the return codes.

Error Codes

The error code numbers returned by library functions are defined in
the file scic/errno.h. They all have the prefix SCIC_ and
expand to non-zero constant integer values. Error codes above 1024 are
reserved for applications, and are not used by the library. Many of
the error codes use the same base name as the corresponding error code
in the C library. Here are some of the most common error codes,

	
int SCIC_EDOM

	Domain error; used by mathematical functions when an argument value does
not fall into the domain over which the function is defined (like
EDOM in the C library)

	
int SCIC_ERANGE

	Range error; used by mathematical functions when the result value is not
representable because of overflow or underflow (like ERANGE in the C
library)

	
int SCIC_ENOMEM

	No memory available. The system cannot allocate more virtual memory
because its capacity is full (like ENOMEM in the C library). This error
is reported when a SCIC routine encounters problems when trying to
allocate memory with malloc().

	
int SCIC_EINVAL

	Invalid argument. This is used to indicate various kinds of problems
with passing the wrong argument to a library function (like EINVAL in the C
library).

The error codes can be converted into an error message using the
function scic_strerror().

	
const char * scic_strerror(const int scic_errno)

	This function returns a pointer to a char describing the error code
scic_errno. For example:

printf ("error: %s\n", scic_strerror (status));

would print an error message like error: output range error for a
status value of SCIC_ERANGE.

Error Handlers

The default behavior of the SCIC error handler is to print a short
message and call abort(). When this default is in use programs
will stop with a core-dump whenever a library routine reports an error.
This is intended as a fail-safe default for programs which do not check
the return status of library routines (we don’t encourage you to write
programs this way).

If you turn off the default error handler it is your responsibility to
check the return values of routines and handle them yourself. You can
also customize the error behavior by providing a new error handler. For
example, an alternative error handler could log all errors to a file,
ignore certain error conditions (such as underflows), or start the
debugger and attach it to the current process when an error occurs.

All SCIC error handlers have the type scic_error_handler_t, which is
defined in scic_errno.h,

	
scic_error_handler_t

	This is the type of SCIC error handler functions. An error handler will
be passed four arguments which specify the reason for the error (a
string), the name of the source file in which it occurred (also a
string), the line number in that file (an integer) and the error number
(an integer). The source file and line number are set at compile time
using the __FILE__ and __LINE__ directives in the
preprocessor. An error handler function returns type void.
Error handler functions should be defined like this:

void handler (const char * reason,
 const char * file,
 int line,
 int scic_errno)

To request the use of your own error handler you need to call the
function scic_set_error_handler() which is also declared in
scic_errno.h,

	
scic_error_handler_t * scic_set_error_handler(scic_error_handler_t * new_handler)

	This function sets a new error handler, new_handler, for the SCIC
library routines. The previous handler is returned (so that you can
restore it later). Note that the pointer to a user defined error
handler function is stored in a static variable, so there can be only
one error handler per program. This function should be not be used in
multi-threaded programs except to set up a program-wide error handler
from a master thread. The following example shows how to set and
restore a new error handler:

/* save original handler, install new handler */
old_handler = scic_set_error_handler (&my_handler);

/* code uses new handler */
.....

/* restore original handler */
scic_set_error_handler (old_handler);

To use the default behavior (abort() on error) set the error
handler to NULL:

old_handler = scic_set_error_handler (NULL);

	
scic_error_handler_t * scic_set_error_handler_off()

	This function turns off the error handler by defining an error handler
which does nothing. This will cause the program to continue after any
error, so the return values from any library routines must be checked.
This is the recommended behavior for production programs. The previous
handler is returned (so that you can restore it later).

The error behavior can be changed for specific applications by
recompiling the library with a customized definition of the
SCIC_ERROR macro in the file scic_errno.h.

Using SCIC error reporting in your own functions

If you are writing numerical functions in a program which also uses SCIC
code you may find it convenient to adopt the same error reporting
conventions as in the library.

To report an error you need to call the function scic_error() with a
string describing the error and then return an appropriate error code
from scic_errno.h, or a special value, such as NaN. For
convenience the file scic_errno.h defines two macros which carry
out these steps:

	
SCIC_ERROR(reason, scic_errno)

	This macro reports an error using the SCIC conventions and returns a
status value of scic_errno. It expands to the following code fragment:

scic_error (reason, __FILE__, __LINE__, scic_errno);
return scic_errno;

The macro definition in scic_errno.h actually wraps the code
in a do { ... } while (0) block to prevent possible
parsing problems.

Here is an example of how the macro could be used to report that a
routine did not achieve a requested tolerance. To report the error the
routine needs to return the error code SCIC_ETOL:

if (residual > tolerance)
 {
 SCIC_ERROR("residual exceeds tolerance", SCIC_ETOL);
 }

	
SCIC_ERROR_VAL(reason, scic_errno, value)

	This macro is the same as SCIC_ERROR but returns a user-defined
value of value instead of an error code. It can be used for
mathematical functions that return a floating point value.

The following example shows how to return a NaN at a mathematical
singularity using the SCIC_ERROR_VAL macro:

if (x == 0)
 {
 SCIC_ERROR_VAL("argument lies on singularity", SCIC_ERANGE, SCIC_SCIC_NAN);
 }

Index

 A
 | C
 | D
 | E
 | H
 | I
 | L
 | M
 | S

A

 	
 	ANSI C, use of

C

 	
 	C extensions, compatible use of

 	C99, inline keyword

 	
 	compatibility

 	compiling programs, include paths

 	compiling programs, library paths

D

 	
 	dollar sign $, shell prompt

E

 	
 	error codes

 	error codes, reserved

 	error handlers

 	
 	error handling

 	error handling macros

 	extern inline

H

 	
 	header files, including

I

 	
 	including SCIC header files

 	
 	inline functions

L

 	
 	libraries, linking with

 	
 	license of SCIC

 	linking with SCIC libraries

M

 	
 	MIT

S

 	
 	SCIC_EDOM (C variable)

 	SCIC_EINVAL (C variable)

 	SCIC_ENOMEM (C variable)

 	SCIC_ERANGE (C variable)

 	SCIC_ERROR (C macro)

 	scic_error_handler_t (C type)

 	
 	SCIC_ERROR_VAL (C macro)

 	SCIC_EXTERN_INLINE

 	scic_set_error_handler (C function)

 	scic_set_error_handler_off (C function)

 	scic_strerror (C function)

 	standards conformance, ANSI C

 nav.xhtml

 Table of Contents

 		
 Welcome to SCIC’s documentation!

 		
 Introduction

 		
 Routines available in SCIC

 		
 Conventions used in this manual

 		
 Using the Libraries

 		
 Compiling and Linking

 		
 Linking programs with the library

 		
 Shared Libraries

 		
 ANSI C Compliance

 		
 Inline functions

 		
 Long double

 		
 Compatibility with C++

 		
 Thread-safety

 		
 Error Handling

 		
 Error Reporting

 		
 Error Codes

 		
 Error Handlers

 		
 Using SCIC error reporting in your own functions

_static/file.png

_static/down-pressed.png

_static/down.png

_static/up-pressed.png

_static/minus.png

_static/plus.png

_static/up.png

_static/comment-bright.png

_static/comment-close.png

_static/ajax-loader.gif

_static/comment.png

